Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Commun Med (Lond) ; 1: 16, 2021.
Article in English | MEDLINE | ID: covidwho-1860408

ABSTRACT

Background: Residents of Long-Term Care Facilities (LTCFs) represent a major share of COVID-19 deaths worldwide. Measuring the vaccine effectiveness among the most vulnerable in these settings is essential to monitor and improve mitigation strategies. Methods: We evaluate the early effect of the administration of BNT162b2-mRNA vaccine to individuals older than 64 years residing in LTCFs in Catalonia, Spain. We monitor all the SARS-CoV-2 documented infections and deaths among LTCFs residents once more than 70% of them were fully vaccinated (February-March 2021). We develop a modeling framework based on the relationship between community and LTCFs transmission during the pre-vaccination period (July-December 2020). We compute the total reduction in SARS-CoV-2 documented infections and deaths among residents of LTCFs over time, as well as the reduction in the detected transmission for all the LTCFs. We compare the true observations with the counterfactual predictions. Results: We estimate that once more than 70% of the LTCFs population are fully vaccinated, 74% (58-81%, 90% CI) of COVID-19 deaths and 75% (36-86%, 90% CI) of all expected documented infections among LTCFs residents are prevented. Further, detectable transmission among LTCFs residents is reduced up to 90% (76-93%, 90% CI) relative to that expected given transmission in the community. Conclusions: Our findings provide evidence that high-coverage vaccination is the most effective intervention to prevent SARS-CoV-2 transmission and death among LTCFs residents. Widespread vaccination could be a feasible avenue to control the COVID-19 pandemic conditional on key factors such as vaccine escape, roll out and coverage.

2.
PLoS Comput Biol ; 18(3): e1009964, 2022 03.
Article in English | MEDLINE | ID: covidwho-1770638

ABSTRACT

When responding to infectious disease outbreaks, rapid and accurate estimation of the epidemic trajectory is critical. However, two common data collection problems affect the reliability of the epidemiological data in real time: missing information on the time of first symptoms, and retrospective revision of historical information, including right censoring. Here, we propose an approach to construct epidemic curves in near real time that addresses these two challenges by 1) imputation of dates of symptom onset for reported cases using a dynamically-estimated "backward" reporting delay conditional distribution, and 2) adjustment for right censoring using the NobBS software package to nowcast cases by date of symptom onset. This process allows us to obtain an approximation of the time-varying reproduction number (Rt) in real time. We apply this approach to characterize the early SARS-CoV-2 outbreak in two Spanish regions between March and April 2020. We evaluate how these real-time estimates compare with more complete epidemiological data that became available later. We explore the impact of the different assumptions on the estimates, and compare our estimates with those obtained from commonly used surveillance approaches. Our framework can help improve accuracy, quantify uncertainty, and evaluate frequently unstated assumptions when recovering the epidemic curves from limited data obtained from public health systems in other locations.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , Humans , Reproducibility of Results , Retrospective Studies , SARS-CoV-2
3.
Sci Rep ; 11(1): 6995, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1387469

ABSTRACT

In response to the SARS-CoV-2 pandemic, unprecedented travel restrictions and stay-at-home orders were enacted around the world. Ultimately, the public's response to announcements of lockdowns-defined as restrictions on both local movement or long distance travel-will determine how effective these kinds of interventions are. Here, we evaluate the effects of lockdowns on human mobility and simulate how these changes may affect epidemic spread by analyzing aggregated mobility data from mobile phones. We show that in 2020 following lockdown announcements but prior to their implementation, both local and long distance movement increased in multiple locations, and urban-to-rural migration was observed around the world. To examine how these behavioral responses to lockdown policies may contribute to epidemic spread, we developed a simple agent-based spatial model. Our model shows that this increased movement has the potential to increase seeding of the epidemic in less urban areas, which could undermine the goal of the lockdown in preventing disease spread. Lockdowns play a key role in reducing contacts and controlling outbreaks, but appropriate messaging surrounding their announcement and careful evaluation of changes in mobility are needed to mitigate the possible unintended consequences.


Subject(s)
COVID-19/prevention & control , Movement , Quarantine , COVID-19/epidemiology , COVID-19/virology , Humans , Models, Theoretical , Pandemics , SARS-CoV-2/isolation & purification , Travel
4.
Epidemiol Infect ; 149: e102, 2021 04 27.
Article in English | MEDLINE | ID: covidwho-1279797

ABSTRACT

Estimating the lengths-of-stay (LoS) of hospitalised COVID-19 patients is key for predicting the hospital beds' demand and planning mitigation strategies, as overwhelming the healthcare systems has critical consequences for disease mortality. However, accurately mapping the time-to-event of hospital outcomes, such as the LoS in the intensive care unit (ICU), requires understanding patient trajectories while adjusting for covariates and observation bias, such as incomplete data. Standard methods, such as the Kaplan-Meier estimator, require prior assumptions that are untenable given current knowledge. Using real-time surveillance data from the first weeks of the COVID-19 epidemic in Galicia (Spain), we aimed to model the time-to-event and event probabilities of patients' hospitalised, without parametric priors and adjusting for individual covariates. We applied a non-parametric mixture cure model and compared its performance in estimating hospital ward (HW)/ICU LoS to the performances of commonly used methods to estimate survival. We showed that the proposed model outperformed standard approaches, providing more accurate ICU and HW LoS estimates. Finally, we applied our model estimates to simulate COVID-19 hospital demand using a Monte Carlo algorithm. We provided evidence that adjusting for sex, generally overlooked in prediction models, together with age is key for accurately forecasting HW and ICU occupancy, as well as discharge or death outcomes.


Subject(s)
COVID-19/epidemiology , Forecasting/methods , Length of Stay/trends , Models, Statistical , Age Factors , Bed Occupancy/statistics & numerical data , Bed Occupancy/trends , Hospital Mortality/trends , Hospitals , Humans , Intensive Care Units/statistics & numerical data , Intensive Care Units/trends , Length of Stay/statistics & numerical data , Patient Discharge/statistics & numerical data , Patient Discharge/trends , SARS-CoV-2 , Sex Factors , Spain/epidemiology , Statistics, Nonparametric , Survival Analysis
5.
Res Sq ; 2021 Apr 12.
Article in English | MEDLINE | ID: covidwho-1200426

ABSTRACT

Residents of Long-Term Care Facilities (LTCFs) represent a major share of COVID-19 deaths worldwide. Information on vaccine effectiveness in these settings is essential to improve mitigation strategies, but evidence remains limited. To evaluate the early effect of the administration of BNT162b2 mRNA vaccines in LTCFs, we monitored subsequent SARS-CoV-2 documented infections and deaths in Catalonia, a region of Spain, and compared them to counterfactual model predictions from February 6th to March 28th, 2021, the subsequent time period after which 70% of residents were fully vaccinated. We calculated the reduction in SARS-CoV-2 documented infections and deaths as well as the detected county-level transmission. We estimated that once more than 70% of the LTCFs population were fully vaccinated, 74% (58%-81%, 90% CI) of COVID-19 deaths and 75% (36%-86%) of all documented infections were prevented. Further, detectable transmission was reduced up to 90% (76-93% 90%CI). Our findings provide evidence that high-coverage vaccination is the most effective intervention to prevent SARS-CoV-2 transmission and death. Widespread vaccination could be a feasible avenue to control the COVID-19 pandemic.

6.
Nat Commun ; 12(1): 311, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1026821

ABSTRACT

Early in the COVID-19 pandemic, predictions of international outbreaks were largely based on imported cases from Wuhan, China, potentially missing imports from other cities. We provide a method, combining daily COVID-19 prevalence and flight passenger volume, to estimate importations from 18 Chinese cities to 43 international destinations, including 26 in Africa. Global case importations from China in early January came primarily from Wuhan, but the inferred source shifted to other cities in mid-February, especially for importations to African destinations. We estimate that 10.4 (6.2 - 27.1) COVID-19 cases were imported to these African destinations, which exhibited marked variation in their magnitude and main sources of importation. We estimate that 90% of imported cases arrived between 17 January and 7 February, prior to the first case detections. Our results highlight the dynamic role of source locations, which can help focus surveillance and response efforts.


Subject(s)
COVID-19/epidemiology , Pandemics , Travel , Africa/epidemiology , Aircraft , COVID-19/transmission , China/epidemiology , Humans , Models, Theoretical , Prevalence , SARS-CoV-2 , Travel/statistics & numerical data
7.
PLoS Comput Biol ; 16(12): e1008409, 2020 12.
Article in English | MEDLINE | ID: covidwho-966830

ABSTRACT

Estimation of the effective reproductive number Rt is important for detecting changes in disease transmission over time. During the Coronavirus Disease 2019 (COVID-19) pandemic, policy makers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori and colleagues, which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis, are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to the spread. We advise caution when using methods derived from the approach of Bettencourt and Ribeiro, as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation.


Subject(s)
Basic Reproduction Number , COVID-19 , COVID-19/epidemiology , COVID-19/transmission , Computational Biology , Humans , Models, Statistical , SARS-CoV-2
9.
Nat Med ; 26(4): 506-510, 2020 04.
Article in English | MEDLINE | ID: covidwho-52238

ABSTRACT

As of 29 February 2020 there were 79,394 confirmed cases and 2,838 deaths from COVID-19 in mainland China. Of these, 48,557 cases and 2,169 deaths occurred in the epicenter, Wuhan. A key public health priority during the emergence of a novel pathogen is estimating clinical severity, which requires properly adjusting for the case ascertainment rate and the delay between symptoms onset and death. Using public and published information, we estimate that the overall symptomatic case fatality risk (the probability of dying after developing symptoms) of COVID-19 in Wuhan was 1.4% (0.9-2.1%), which is substantially lower than both the corresponding crude or naïve confirmed case fatality risk (2,169/48,557 = 4.5%) and the approximator1 of deaths/deaths + recoveries (2,169/2,169 + 17,572 = 11%) as of 29 February 2020. Compared to those aged 30-59 years, those aged below 30 and above 59 years were 0.6 (0.3-1.1) and 5.1 (4.2-6.1) times more likely to die after developing symptoms. The risk of symptomatic infection increased with age (for example, at ~4% per year among adults aged 30-60 years).


Subject(s)
Age Factors , Coronavirus Infections , Models, Statistical , Pandemics , Pneumonia, Viral , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Asymptomatic Diseases , Betacoronavirus , COVID-19 , COVID-19 Testing , Child , Child, Preschool , China/epidemiology , Clinical Laboratory Techniques , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Female , Humans , Infant , Male , Middle Aged , Mortality , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Prognosis , Real-Time Polymerase Chain Reaction , Risk Factors , SARS-CoV-2
10.
Lancet Infect Dis ; 20(7): 803-808, 2020 07.
Article in English | MEDLINE | ID: covidwho-23758

ABSTRACT

BACKGROUND: The incidence of coronavirus disease 2019 (COVID-19) in Wuhan, China, has been estimated using imported case counts of international travellers, generally under the assumptions that all cases of the disease in travellers have been ascertained and that infection prevalence in travellers and residents is the same. However, findings indicate variation among locations in the capacity for detection of imported cases. Singapore has had very strong epidemiological surveillance and contact tracing capacity during previous infectious disease outbreaks and has consistently shown high sensitivity of case-detection during the COVID-19 outbreak. METHODS: We used a Bayesian modelling approach to estimate the relative capacity for detection of imported cases of COVID-19 for 194 locations (excluding China) compared with that for Singapore. We also built a simple mathematical model of the point prevalence of infection in visitors to an epicentre relative to that in residents. FINDINGS: The weighted global ability to detect Wuhan-to-location imported cases of COVID-19 was estimated to be 38% (95% highest posterior density interval [HPDI] 22-64) of Singapore's capacity. This value is equivalent to 2·8 (95% HPDI 1·5-4·4) times the current number of imported and reported cases that could have been detected if all locations had had the same detection capacity as Singapore. Using the second component of the Global Health Security index to stratify likely case-detection capacities, the ability to detect imported cases relative to Singapore was 40% (95% HPDI 22-67) among locations with high surveillance capacity, 37% (18-68) among locations with medium surveillance capacity, and 11% (0-42) among locations with low surveillance capacity. Treating all travellers as if they were residents (rather than accounting for the brief stay of some of these travellers in Wuhan) contributed modestly to underestimation of prevalence. INTERPRETATION: Estimates of case counts in Wuhan based on assumptions of 100% detection in travellers could have been underestimated by several fold. Furthermore, severity estimates will be inflated several fold since they also rely on case count estimates. Finally, our model supports evidence that underdetected cases of COVID-19 have probably spread in most locations around the world, with greatest risk in locations of low detection capacity and high connectivity to the epicentre of the outbreak. FUNDING: US National Institute of General Medical Sciences, and Fellowship Foundation Ramon Areces.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Travel , Bayes Theorem , Bias , COVID-19 , China/epidemiology , Data Interpretation, Statistical , Humans , Pandemics , Population Surveillance/methods , Prevalence , SARS-CoV-2 , Singapore/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL